The Meaning of It All

Thoughts of a Citizen-Scientist

Contributors

By Richard P. Feynman

Formats and Prices

Price

$10.99

Price

$13.99 CAD

Format

Format:

  1. ebook $10.99 $13.99 CAD
  2. Trade Paperback $17.99 $22.99 CAD

This item is a preorder. Your payment method will be charged immediately, and the product is expected to ship on or around April 29, 2009. This date is subject to change due to shipping delays beyond our control.

Many appreciate Richard P. Feynman’s contributions to twentieth-century physics, but few realize how engaged he was with the world around him — how deeply and thoughtfully he considered the religious, political, and social issues of his day. Now, a wonderful book — based on a previously unpublished, three-part public lecture he gave at the University of Washington in 1963 — shows us this other side of Feynman, as he expounds on the inherent conflict between science and religion, people’s distrust of politicians, and our universal fascination with flying saucers, faith healing, and mental telepathy. Here we see Feynman in top form: nearly bursting into a Navajo war chant, then pressing for an overhaul of the English language (if you want to know why Johnny can’t read, just look at the spelling of “friend”); and, finally, ruminating on the death of his first wife from tuberculosis. This is quintessential Feynman — reflective, amusing, and ever enlightening.

Excerpt

   1   

THE UNCERTAINTY OF SCIENCE




I WANT TO ADDRESS myself directly to the impact of science on man’s ideas in other fields, a subject Mr. John Danz particularly wanted to be discussed. In the first of these lectures I will talk about the nature of science and emphasize particularly the existence of doubt and uncertainty. In the second lecture I will discuss the impact of scientific views on political questions, in particular the question of national enemies, and on religious questions. And in the third lecture I will describe how society looks to me—I could say how society looks to a scientific man, but it is only how it looks to me—and what future scientific discoveries may produce in terms of social problems.

What do I know of religion and politics? Several friends in the physics departments here and in other places laughed and said, “I’d like to come and hear what you have to say. I never knew you were interested very much in those things.” They mean, of course, I am interested, but I would not dare to talk about them.

In talking about the impact of ideas in one field on ideas in another field, one is always apt to make a fool of oneself. In these days of specialization there are too few people who have such a deep understanding of two departments of our knowledge that they do not make fools of themselves in one or the other.

The ideas I wish to describe are old ideas. There is practically nothing that I am going to say tonight that could not easily have been said by philosophers of the seventeenth century. Why repeat all this? Because there are new generations born every day. Because there are great ideas developed in the history of man, and these ideas do not last unless they are passed purposely and clearly from generation to generation.

Many old ideas have become such common knowledge that it is not necessary to talk about or explain them again. But the ideas associated with the problems of the development of science, as far as I can see by looking around me, are not of the kind that everyone appreciates. It is true that a large number of people do appreciate them. And in a university particularly most people appreciate them, and you may be the wrong audience for me.

Now in this difficult business of talking about the impact of the ideas of one field on those of another, I shall start at the end that I know. I do know about science. I know its ideas and its methods, its attitudes toward knowledge, the sources of its progress, its mental discipline. And therefore, in this first lecture, I shall talk about the science that I know, and I shall leave the more ridiculous of my statements for the next two lectures, at which, I assume, the general law is that the audiences will be smaller.

What is science? The word is usually used to mean one of three things, or a mixture of them. I do not think we need to be precise—it is not always a good idea to be too precise. Science means, sometimes, a special method of finding things out. Sometimes it means the body of knowledge arising from the things found out. It may also mean the new things you can do when you have found something out, or the actual doing of new things. This last field is usually called technology—but if you look at the science section in Time magazine you will find it covers about 50 percent what new things are found out and about 50 percent what new things can be and are being done. And so the popular definition of science is partly technology, too.

I want to discuss these three aspects of science in reverse order. I will begin with the new things that you can do—that is, with technology. The most obvious characteristic of science is its application, the fact that as a consequence of science one has a power to do things. And the effect this power has had need hardly be mentioned. The whole industrial revolution would almost have been impossible without the development of science. The possibilities today of producing quantities of food adequate for such a large population, of controlling sickness—the very fact that there can be free men without the necessity of slavery for full production—are very likely the result of the development of scientific means of production.

Now this power to do things carries with it no instructions on how to use it, whether to use it for good or for evil. The product of this power is either good or evil, depending on how it is used. We like improved production, but we have problems with automation. We are happy with the development of medicine, and then we worry about the number of births and the fact that no one dies from the diseases we have eliminated. Or else, with the same knowledge of bacteria, we have hidden laboratories in which men are working as hard as they can to develop bacteria for which no one else will be able to find a cure. We are happy with the development of air transportation and are impressed by the great airplanes, but we are aware also of the severe horrors of air war. We are pleased by the ability to communicate between nations, and then we worry about the fact that we can be snooped upon so easily. We are excited by the fact that space can now be entered; well, we will undoubtedly have a difficulty there, too. The most famous of all these imbalances is the development of nuclear energy and its obvious problems.

Is science of any value?

I think a power to do something is of value. Whether the result is a good thing or a bad thing depends on how it is used, but the power is a value.

Once in Hawaii I was taken to see a Buddhist temple. In the temple a man said, “I am going to tell you something that you will never forget.” And then he said, “To every man is given the key to the gates of heaven. The same key opens the gates of hell.”

And so it is with science. In a way it is a key to the gates of heaven, and the same key opens the gates of hell, and we do not have any instructions as to which is which gate. Shall we throw away the key and never have a way to enter the gates of heaven? Or shall we struggle with the problem of which is the best way to use the key? That is, of course, a very serious question, but I think that we cannot deny the value of the key to the gates of heaven.

All the major problems of the relations between society and science lie in this same area. When the scientist is told that he must be more responsible for his effects on society, it is the applications of science that are referred to. If you work to develop nuclear energy you must realize also that it can be used harmfully. Therefore, you would expect that, in a discussion of this kind by a scientist, this would be the most important topic. But I will not talk about it further. I think that to say these are scientific problems is an exaggeration. They are far more humanitarian problems. The fact that how to work the power is clear, but how to control it is not, is something not so scientific and is not something that the scientist knows so much about.

Let me illustrate why I do not want to talk about this. Some time ago, in about 1949 or 1950, I went to Brazil to teach physics. There was a Point Four program in those days, which was very exciting—everyone was going to help the underdeveloped countries. What they needed, of course, was technical know-how.

In Brazil I lived in the city of Rio. In Rio there are hills on which are homes made with broken pieces of wood from old signs and so forth. The people are extremely poor. They have no sewers and no water. In order to get water they carry old gasoline cans on their heads down the hills. They go to a place where a new building is being built, because there they have water for mixing cement. The people fill their cans with water and carry them up the hills. And later you see the water dripping down the hill in dirty sewage. It is a pitiful thing.

Right next to these hills are the exciting buildings of the Copacabana beach, beautiful apartments, and so on.

And I said to my friends in the Point Four program, “Is this a problem of technical know-how? They don’t know how to put a pipe up the hill? They don’t know how to put a pipe to the top of the hill so that the people can at least walk uphill with the empty cans and downhill with the full cans?”

So it is not a problem of technical know-how. Certainly not, because in the neighboring apartment buildings there are pipes, and there are pumps. We realize that now. Now we think it is a problem of economic assistance, and we do not know whether that really works or not. And the question of how much it costs to put a pipe and a pump to the top of each of the hills is not one that seems worth discussing, to me.

Although we do not know how to solve the problem, I would like to point out that we tried two things, technical know-how and economic assistance. We are discouraged with them both, and we are trying something else. As you will see later, I find this encouraging. I think that to keep trying new solutions is the way to do everything.

Those, then, are the practical aspects of science, the new things that you can do. They are so obvious that we do not need to speak about them further.

The next aspect of science is its contents, the things that have been found out. This is the yield. This is the gold. This is the excitement, the pay you get for all the disciplined thinking and hard work. The work is not done for the sake of an application. It is done for the excitement of what is found out. Perhaps most of you know this. But to those of you who do not know it, it is almost impossible for me to convey in a lecture this important aspect, this exciting part, the real reason for science. And without understanding this you miss the whole point. You cannot understand science and its relation to anything else unless you understand and appreciate the great adventure of our time. You do not live in your time unless you understand that this is a tremendous adventure and a wild and exciting thing.

Do you think it is dull? It isn’t. It is most difficult to convey, but perhaps I can give some idea of it. Let me start anywhere, with any idea.

For instance, the ancients believed that the earth was the back of an elephant that stood on a tortoise that swam in a bottomless sea. Of course, what held up the sea was another question. They did not know the answer.

The belief of the ancients was the result of imagination. It was a poetic and beautiful idea. Look at the way we see it today. Is that a dull idea? The world is a spinning ball, and people are held on it on all sides, some of them upside down. And we turn like a spit in front of a great fire. We whirl around the sun. That is more romantic, more exciting. And what holds us? The force of gravitation, which is not only a thing of the earth but is the thing that makes the earth round in the first place, holds the sun together and keeps us running around the sun in our perpetual attempt to stay away. This gravity holds its sway not only on the stars but between the stars; it holds them in the great galaxies for miles and miles in all directions.

This universe has been described by many, but it just goes on, with its edge as unknown as the bottom of the bottomless sea of the other idea—just as mysterious, just as awe-inspiring, and just as incomplete as the poetic pictures that came before.

But see that the imagination of nature is far, far greater than the imagination of man. No one who did not have some inkling of this through observations could ever have imagined such a marvel as nature is.

Or the earth and time. Have you read anywhere, by any poet, anything about time that compares with real time, with the long, slow process of evolution? Nay, I went too quickly. First, there was the earth without anything alive on it. For billions of years this ball was spinning with its sunsets and its waves and the sea and the noises, and there was no thing alive to appreciate it. Can you conceive, can you appreciate or fit into your ideas what can be the meaning of a world without a living thing on it? We are so used to looking at the world from the point of view of living things that we cannot understand what it means not to be alive, and yet most of the time the world had nothing alive on it. And in most places in the universe today there probably is nothing alive.

Or life itself. The internal machinery of life, the chemistry of the parts, is something beautiful. And it turns out that all life is interconnected with all other life. There is a part of chlorophyll, an important chemical in the oxygen processes in plants, that has a kind of square pattern; it is a rather pretty ring called a benzine ring. And far removed from the plants are animals like ourselves, and in our oxygen-containing systems, in the blood, the hemoglobin, there are the same interesting and peculiar square rings. There is iron in the center of them instead of magnesium, so they are not green but red, but they are the same rings.

The proteins of bacteria and the proteins of humans are the same. In fact it has recently been found that the protein-making machinery in the bacteria can be given orders from material from the red cells to produce red cell proteins. So close is life to life. The universality of the deep chemistry of living things is indeed a fantastic and beautiful thing. And all the time we human beings have been too proud even to recognize our kinship with the animals.

Genre:

On Sale
Apr 29, 2009
Page Count
192 pages
Publisher
Basic Books
ISBN-13
9780786739141

Richard P. Feynman

About the Author

Richard P. Feynman was Richard Chace Tolman Professor of Theoretical Physics at the California Institute of Technology. He was awarded the 1965 Nobel Prize for his work on the development of quantum field theory. He was also one of the most famous and beloved figures of the twentieth century, both in physics and as a public intellectual.

Learn more about this author